Manual Omega Engineering OS533

78 pages 1.5 mb
Download

Go to site of 78

Summary
  • Omega Engineering OS533 - page 1

    OS5 31, OS5 32, OS53x-CF , OS5 33, OS5 34, OS530L, OS530HR OS523, OS524 OMEGASCOPE ® Handheld Inf r ar e d The r m om e t er Shown with Built-in Laser Sighting TM omega.com e-mail: info@omega.com For latest product manuals: omegamanual.info U ser ’ s Guide Shop online at MADE IN ...

  • Omega Engineering OS533 - page 2

    Servicing Nor th America: U.S.A.: One Omega Drive, Box 4047 ISO 9001 Certified Stamford, CT 06907-0047 Tel: (203) 359-1660 FAX: (203) 359-7700 e-mail: info@omega.com Canada: 976 Bergar Laval (Quebec) H7L 5A1, Canada Tel: (514) 856-6928 FAX: (514) 856-6886 e-mail: info@omega.ca For immediate technical or application assistance: U.S.A. and Canada: Sa ...

  • Omega Engineering OS533 - page 3

    Unpacking Instructions n4 Notes ...

  • Omega Engineering OS533 - page 4

    i Unpacking Instructions NOTE Remove the Packing List and verify that you have received all equipment, including the following (quantities in parentheses): • OS530/OS520 Series Handheld Infrared Thermometer (1) • AA Size Lithium Batteries (4) • Soft Cover Carrying Case (1) • Analog Cable (1) • RS232 Cable (only for OS533, OS534, OS523, OS ...

  • Omega Engineering OS533 - page 5

    ii ...

  • Omega Engineering OS533 - page 6

    TABLE OF CONTENTS Page Unpacking Instructions i Chapter 1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Introduction 1-1 1.2 Parts of the Thermometer 1-4 1.2.1 Front of the Thermometer 1-4 1.2.2 Rear of the Thermometer 1-6 Chapter 2 Using the Handheld Infrared Thermometer . . . . . . . . . 2-1 2.1 How to Power the ...

  • Omega Engineering OS533 - page 7

    iv Appendix A How Infrared Thermometry Works . . . . . . . . . . . . . A-1 Appendix B Emissivity Values . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 Appendix C Determining an Unknown Emissivity . . . . . . . . . . . . C-1 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 TABLE OF CONTEN ...

  • Omega Engineering OS533 - page 8

    1-1 General Description 1 1.1 Introduction The OS530/OS520 series Handheld Infrared (IR) Thermometers provide non-contact temperature measurements up to 4500°F. They offer effective solutions for many non-contact temperature applications, including the following: • Predictive Maintenance: Tracking temperature shifts which indicate pending failur ...

  • Omega Engineering OS533 - page 9

    General Description 1 1-2 The thermometer is easy to use: • Units have standard “V” groove aiming sights. • Integral tripod mount permits hands-free operation, if necessary. • Temperature readings are switchable from °F to °C via the keypad. • Parameters, such as target material emissivity and alarm setpoints, can be set and remain in ...

  • Omega Engineering OS533 - page 10

    1-3 General Description 1 Features OS530L OS530HR OS530L-CF OS533-CF OS534-CF Accuracy* ±1% rdg 3°F (1.7 °C) ±1% rdg ±1% rdg ±1% rdg Range -18 to 538°C -30 to 121°C -18 to 538°C -18 to 538°C -18 to 871°C 0 to 1000°F -22 to 250°F 0 to 1000°F 0 to 1000°F 0 to 1600°F Emissivity Adjustable Adjustable Adjustable Adjustable Adjustable Dis ...

  • Omega Engineering OS533 - page 11

    General Description 1 1-4 Distance to Spot Size Ratio OS523-1 30:1 OS523-2 60:1 OS523-3 68:1 * * OS523 provides three field of views: Features OS523 ** OS524 Accuracy ±1%rdg ±1% rdg Range 0 to 2500°F 1000 to 4500°F (-18 to 1371°C) (538 to 2482°C) Emissivity adjustable adjustable Backlit Dual Display standard standard Distance to Spot Size Rat ...

  • Omega Engineering OS533 - page 12

    1.2 Parts of the Thermometer 1.2.1 Front of the Thermometer Figure 1-1. OS530/OS520 Series Handheld Infrared Thermometer Front View The display is shown in more detail in Figure 1-2 and described in Table 1-2. There are no user-serviceable parts in the thermometer. Refer to Chapter 3 for Laser Sight information. ° F 1-5 General Description 1 ...

  • Omega Engineering OS533 - page 13

    General Description 1 1-6 Figure 1-2. Display and Keypad View Table 1-2. Display Details Key Description ➀ Display Mode displays one of the following: TC (Thermocouple Input) E (Emissivity) HAL (High Alarm Setpoint) MAX (Maximum Temperature) LAL (Low Alarm Setpoint) MIN (Minimum Temperature) AMB (Ambient Target Temp) dIF (Differential Temperature ...

  • Omega Engineering OS533 - page 14

    1-7 General Description 1 1.2.2 Rear of the Thermometer Figure 1-3 shows the various jacks that are used to connect a recorder or the ac adapter to the thermometer. The figure also shows the location of the tripod thread mount used for fixed point monitoring. More details are provided in Section 2.2.1. Figure 1-3. OS530 Series Handheld Infrared The ...

  • Omega Engineering OS533 - page 15

    General Description 1 1-8 Notes ...

  • Omega Engineering OS533 - page 16

    2-1 Using the Handheld Infrared Thermometer 2 2.1 How to Power the Thermometer 2.1.1 Battery Operation Invert the thermometer and install 4 fresh AA size batteries as shown in Figure 2-1. Make sure the batteries’ polarities are correct, the batteries are not put in backwards, and are of the same type. If the icon flashes, the batteries must be re ...

  • Omega Engineering OS533 - page 17

    Using the Handheld Infrared Thermometer 2 2-2 2.2 Operating the Thermometer 1a. (Without the Laser Sighting) -Aim the thermometer at the target to be measured. Use the “V” groove (shown in Figure 1-1) on top of the thermometer to align the target to the thermometer’s field of view. Look down the “V” groove with one eye only, in order to g ...

  • Omega Engineering OS533 - page 18

    Figure 2-4. Field of View OS531, OS532, OS530L Figure 2-5 Field of View OS533, OS530HR 2-3 Using the Handheld Infrared Thermometer 2 SPOT DIA. * (IN) SPOT DIA. * (CM) ** Measurement distance is from the outside surface of the rubber boot. 4.8" 1.0" @ 0" to 20" 2.5cm @ 51cm 1.2" 1.0" 2.5 6.0 4.0 8.0 10.0 12.2 160 120 80 ...

  • Omega Engineering OS533 - page 19

    Using the Handheld Infrared Thermometer 2 2-4 Figure 2-6 Field of View OS534, OS523-1 Figure 2-7 Field of View OS53x-CF .45" 11.5 3" SPOT DIA.* (MM) *SPOT DIAMETER MEASURED AT 90% ENERGY 7.6 SPOT DIA.* (IN) DISTANCE: SENSOR LENS TO OBJECT (in.) DISTANCE: SENSOR LENS TO OBJECT (cm.) 15.2 6" 9" 12" 15" .15" .39" ...

  • Omega Engineering OS533 - page 20

    2-5 Using the Handheld Infrared Thermometer 2 Figure 2-8 Field of View OS523-2 Figure 2-9 Field of View OS523-3 2. 9 " 0. 9 "@ 0 1. 9 " 22mm @ 0 1.2" 1.0" 31 26 48 75 0. 9 " 0' 3' 16' 10' *SPOT DIAMETER MEASURED AT 9 0% ENERGY D:S = 60:1 5' 5.0 0 1.0 3.0 1.5 SPOT DIA.* (MM) SPOT DIA.* (IN) DIST ...

  • Omega Engineering OS533 - page 21

    Using the Handheld Infrared Thermometer 2 2-6 Figure 2-10 Field of View OS524 3. The target temperature and emissivity are displayed on the LCD. Determine the emissivity of the target (refer to Appendix B). Press the key to increment the target emissivity. Press the key to decrement the target emissivity. 4. Press the key to lock the trigger. The i ...

  • Omega Engineering OS533 - page 22

    2.2.1 Measurement Techniques You can use the IR Thermometer to collect temperature data in any one of five different ways: • Spot Measurement — Measures the temperature of discrete objects such as motor bearings, engine exhaust manifolds, etc.: 1. Aim at the desired target and pull the trigger. 2. If necessary, adjust the emissivity using the a ...

  • Omega Engineering OS533 - page 23

    Using the Handheld Infrared Thermometer 2 2-8 Figure 2-11 Recorder Hookup • Moving Surface Scan - Measures the Temperature of Points on a Moving Surface: 1. Mount the thermometer on a camera tripod and aim at a fixed point on the moving surface. 2. Pull the trigger and press the key to lock the trigger. 3. If necessary, adjust the emissivity. The ...

  • Omega Engineering OS533 - page 24

    2-9 Using the Handheld Infrared Thermometer 2 2.3 Real Time Mode (Active Operation) Definition: Real T ime Mode is the active operational mode of the thermometer . In this mode, the thermometer constantly measures and displays temperatur e. Figure 2-12. General Operational Block Diagram If the trigger is pulled two times in rapid sequence, it may r ...

  • Omega Engineering OS533 - page 25

    Table 2-1. Functional Flow Chart when the Trigger is Pulled (Real Time Mode) DISPLAY MODE: Press to... Go to Go to Go to Go to Go to Go to or Go to Go to or Go to Go to Press to... Print stored data Display stored temperature Press or to... Set memory location Display shows: Last temperature Emissivity Last temperature Maximum temperature Last temp ...

  • Omega Engineering OS533 - page 26

    Figure 2-13. Visual Function Flow Chart LCK LAL ATC PRN HAL MODE MODE DISPLA Y DISPLA Y ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ LCK LCK LCK LCK LCK LCK LCK LCK LCK LCK (Model OS533) LCK (Model OS531, OS532 OS530L, OS530HR) * While in these 5 modes: Use key to change temperature from °F to °C or vice versa. Use key to turn on the display backl ...

  • Omega Engineering OS533 - page 27

    2.3.1 Adjusting Emissivity Refer to Appendices B and C for information on emissivity. 1. Determine the emissivity of the target. 2. Aim at the target and pull the trigger. 3. If necessary, press the key to increment the target emissivity or press the key to decrement the target emissivity. The Emissivity Display Mode (E) appears every time the trig ...

  • Omega Engineering OS533 - page 28

    2.3.3 Calculating Temperature Values The thermometer calculates the MAX, MIN, dIF, and AVG temperatures based on the current temperature. To clear the “AVG ---” display, turn off the thermometer. Every time the thermometer goes from the sleep mode to the Real Time mode (by pulling the trigger) the MAX, MIN, dIF, AVG and TC temperatures are upda ...

  • Omega Engineering OS533 - page 29

    2.3.6 Thermocouple Input (OS532, OS533, OS534) The thermometer accepts thermocouple input. It displays thermocouple temperature and the target temperature (via infrared) simultaneously. This function provides an accurate method of determining an unknown emissivity. • To Determine an unknown target emissivity 1. Connect a contact thermocouple prob ...

  • Omega Engineering OS533 - page 30

    2.3.7 Using the Alarm Functions The thermometer provides audible and visible alarm indications. • To set the high alarm value : 1. Pull the trigger. Then press and hold the key until the High Alarm Display Mode (HAL) appears. 2. Press the key to increment the high alarm value. Press the key to decrement the high alarm value. 3. Press the key to e ...

  • Omega Engineering OS533 - page 31

    NOTE ° F LAL Using the Handheld Infrared Thermometer 2 2-16 • To set the low alarm value: (OS533, OS534, OS523, OS524): 1. Pull the trigger. Then press and hold the key until the Low Alarm Display Mode (LAL) appears. 2. Press the key to increment the low alarm value. Press the key to decrement the low alarm value. 3. Press the key to enable the ...

  • Omega Engineering OS533 - page 32

    2.3.8 Using Ambient Target Temperature Compensation (OS533, OS534, OS523, OS524) Use the Ambient Target Temperature Compensation (AMB) Display Mode when high accuracy readings under both of these conditions are required: • The target has a low emissivity. • The ambient temperature around the target is much higher than the ambient temperature ar ...

  • Omega Engineering OS533 - page 33

    ° F PRN NOTE ° F ATC NOTE Using the Handheld Infrared Thermometer 2 2-18 8. Press and hold the key until the Emissivity Display Mode (E) appears. 9. Change the emissivity to the proper value for the target being measured (refer to Section 2.3.1). 10. Aim at the target. The target temperature and emissivity are displayed on the LCD. 11. After all ...

  • Omega Engineering OS533 - page 34

    Figure 2-14. Serial Printer Hookup 3. Pull the trigger and press the key to lock the trigger. The icon will appear on the display. 4. Press and hold the until the Print Data display Mode (PRN) appears. 5. Press the key to increment the printing interval. Press the key to decrement the printing interval. The printing interval (from 1 to 1999 seconds ...

  • Omega Engineering OS533 - page 35

    ° F PRN ° F PRN Using the Handheld Infrared Thermometer 2 2-20 7. After all data is taken, press the key again and the. icon disappears. 8. Press and hold the until the Emissivity display Mode (E) appears. 9. Press the key to unlock the trigger. 2.3.10 Sending Temperature Data to a Personal Computer (OS533, OS534, OS523, OS524) The thermometer ca ...

  • Omega Engineering OS533 - page 36

    How to Install IR_TEMPSOFT Please follow this installation procedure to install IR_TEMPSOFT: 1. Place the supplied CD disk into your CD-ROM drive. Make certain that you are not running any other applications at this time. Running other applications while trying to install IR_TEMPSOFT may cause installation errors. 2. The CD will automatically start ...

  • Omega Engineering OS533 - page 37

    Using the Handheld Infrared Thermometer 2 2-22 program please contact technical support at Omega Engineering Inc. Connecting the IR-System to the PC Make certain that your Infrared Thermometer is powered down before you attempt to make any connections to the personal computer. Making connections between powered devices and a powered PC can cause da ...

  • Omega Engineering OS533 - page 38

    2-23 Using the Handheld Infrared Thermometer 2 waiting for the thermometer to transmit data through your RS-232 port. 4. Begin transmitting data from the thermometer by pressing and holding the key on the thermometer until the Print Data Display Mode (PRN) appears. 5. Press the "UP" key to increment the printing interval. Press the " ...

  • Omega Engineering OS533 - page 39

    Using the Handheld Infrared Thermometer 2 2-24 2.3.11 Storing the Temperature Data on Command (OS534, OS523, OS524) The thermometer can store up to 100 temperature data points on command. Each set of temperature data is broken down into the temperature value, emissivity, and high alarm setpoint for that temperature. This data is stored in non-volat ...

  • Omega Engineering OS533 - page 40

    2-25 Using the Handheld Infrared Thermometer 2 2.3.12 Erasing the Temperature Data from Memory The user can erase all 100 temperature data points in memory at any time by using the following procedure: 1. Pull the trigger and press the key. The icon will appear. 2. Press the and keys in rapid sequence. If the icon disappeared, repeat steps 1 and 2 ...

  • Omega Engineering OS533 - page 41

    2.4 Recall Mode (Passive Operation) Definition: Recall Mode is the passive operational mode of the thermometer . In this mode, you may r eview the most recently stor ed temperature data and parameters. Figure 2-16. General Operational Block Diagram In order to get into the Recall Mode of operation, press the key only. Do not pull the trigger; other ...

  • Omega Engineering OS533 - page 42

    Table 2-2. Functional Flow Chart (Recall Mode) DISPLAY MODE: Press to... Go to Go to Go to Go to Go to Go to or Go to Go to or Go to Go to Press to... Print stored data Display stored temperature Press or to... Set memory location Display shows: Last temperature Emissivity Last temperature Maximum temperature Last temperature Minimum temperature La ...

  • Omega Engineering OS533 - page 43

    2.4.1 Reviewing the Last Parameters The thermometer stores the last temperature measured in the real time mode (refer to Table 2-1). This temperature can be recalled by pressing the key. - Press the key to review the most recently stored temperature data and parameters. You may review: • MAX temperature • MIN temperature • dIF temperature • ...

  • Omega Engineering OS533 - page 44

    ° F PRN 2-29 Using the Handheld Infrared Thermometer 2 3. To download stored temperature data points from the thermometer, first make certain that it is not in printing mode. Make sure that the IR_TEMPSOFT is installed properly as explained in section 2.3.10. 4. On the main menu bar, click on “Command-> Download Stored Data”. The “Stored ...

  • Omega Engineering OS533 - page 45

    2.6.3 Reviewing Previously Stored Temperature Data (OS534, OS523, OS524) You can review all 100 stored temperature values on the thermometer display using the following procedure: 1. Press and hold the key until you see the Memory Display Mode (MEM) appear. 2. Press the key to increment the memory location or press the key to decrement the memory l ...

  • Omega Engineering OS533 - page 46

    3-1 Laser Sighting 3 3.1 W arnings and Cautions You may receive harmful laser radiation exposure if you do not adhere to the warnings listed below: • USE OF CONTROLS OR ADJUSTMENTS OR PERFORMANCE OF PROCEDURES OTHER THAN THOSE SPECIFIED HERE MAY RESULT IN HAZARDOUS RADIATION EXPOSURE. • DO NOT LOOK AT THE LASER BEAM COMING OUT OF THE LENS OR VI ...

  • Omega Engineering OS533 - page 47

    Laser Sighting 3 3-2 3.2 Description The Laser Sighting is built into the thermometer. It provides a visual indication of the field of view of the thermometer. Aiming at distant targets (up to 40 feet) becomes much easier by using the Laser Sighting. It is offered in two different models, laser dot, and laser dot/circle switchable. OS53x-CF and OS5 ...

  • Omega Engineering OS533 - page 48

    3-3 Laser Sighting 3 3.3 Operating the Laser Sighting 1. Set the laser power switch to the ON position as shown in Figure 3-2. 2. Aim at the target and pull the trigger. 3. The laser beam and the red power indicator LED will turn on. Refer to Figure 3-1 and Figure 3-2. The laser beam will stay on as long as the trigger is pulled. If the trigger is ...

  • Omega Engineering OS533 - page 49

    The Laser Sighting turns on only when used with the thermometer. The module does not turn on by itself. The line of sight of the thermometer does not coincide with that of the Laser Sighting, as shown in Figure 3-4. The two lines of sight become less critical when measuring distant targets. For example, at 30 feet from the target and a 3 foot diame ...

  • Omega Engineering OS533 - page 50

    4-1 4.1 Sighting Scope The Sighting scope is an accessory for the thermometer. It provides a visual indication of the target being measured. Aiming at distant targets (up to 200 feet) becomes much easier by using the Sighting scope. 4.2 Installing and Operating the Sighting Scope 1. If the sighting scope is already installed on the thermometer, go ...

  • Omega Engineering OS533 - page 51

    Sighting Scope 4 4-2 Pair of Mounting Clamps Line of sight of the sighting scope Line of sight of the thermometer 1 1 1/16 (42.8 mm) Figure 4-1. Installing the Sighting Scope ...

  • Omega Engineering OS533 - page 52

    5-1 Maintenance 5 5.1 Replacing the Batteries When you change the batteries, all of the set parameters (i.e. emissivity, high alarm, low alarm, Target Ambient Temperature) will be reset to the default values. For your convenience, you may want to write down all of the set parameters BEFORE replacing the batteries. The thermometer is powered by 4 st ...

  • Omega Engineering OS533 - page 53

    5 Maintenance 5.2 Cleaning the Lens Although all lenses are quite durable, take care to prevent scratching when cleaning them. To clean the lens: 1. Blow off loose particles, using clean air. 2. Gently brush off remaining particles, using a camel hair brush. Alternatively, clean any remaining contaminants with a damp, soft, clean cloth. Be careful ...

  • Omega Engineering OS533 - page 54

    T roubleshooting Guide 6 THERMOMETER Problem Solution The thermometer does 1a. Properly install fresh batteries. not turn on (No Display) 1b. If operating under ac power, check that the ac adapter is plugged in properly to the ac wall outlet and to the thermometer. 1c. Make sure the batteries make good contact - remove and reinstall the batteries. ...

  • Omega Engineering OS533 - page 55

    Troubleshooting Guide 6 6-2 Problem Solution The thermometer is Remove and reinstall the batteries or “locked up” (the disconnect and reconnect the ac display is “frozen”). adapter. The display is either 1. Clean the thermometer lens. erratic or stays at one Refer to Section 4.2. reading. 2. Activate the Diagnostic Program in the thermomete ...

  • Omega Engineering OS533 - page 56

    6-3 Troubleshooting Guide 6 Problem Solution If you see an error code, either “ERR1”, “ERR2”, or “ERR3”, record the code and call our Customer Service Department. Provide Customer Service with the error code that is displayed in the upper left corner of the display. The Customer Service Department representative may ask you to return th ...

  • Omega Engineering OS533 - page 57

    Troubleshooting Guide 6 1. The line of sight and the center of the target are offset by design. (refer to Figure 3-4 and the explanation above it for how to compensate for this). Problem Solution The trigger is pulled two times in rapid sequence. Wait at least 2 seconds between two successive trigger pulls. You may need to set the emissivity, low a ...

  • Omega Engineering OS533 - page 58

    Specifications 7 (Specifications are for all models except where noted) THERMOMETER Measuring: OS530HR, -22°F to 250°F (-30°C to 121°C) Temperature OS531: 0°F to 750°F (–18°C to 400°C) Range: OS530L, OS533,OS532: 0°F to 1000°F (–18°C to 538°C) OS534 0°F to 1600°F (–18°C to 871°C) OS523 0°F to 2500°F (–18°C to 1371°C) OS5 ...

  • Omega Engineering OS533 - page 59

    Specifications 7 7-2 Average Temperature Accuracy Time Period (under continuous operation): 11 1 ⁄ 2 days Emissivity: 0.10 to 1.00 in 0.01 increments, set via keypad Calculated Temperature Maximum (MAX), Minimum (MIN), Values: Average (AVG), Differential (dIF), Thermocouple (TC) Ambient Target Set and enabled via keypad Temperature Compensation: ...

  • Omega Engineering OS533 - page 60

    7-3 Specifications 7 Analog Output Accuracy: ±2mV reference to temperature display Power: 4 A A size 1.5 volt batteries (lithium or alkaline) Battery Types Alkaline: general brand Lithium: Eveready Energizer, model number L91 Battery Storage –40°C to 50°C (-40°F to 122°F) Temperature ac adapter: Optional - available in 120 Vac or 220Vac Clas ...

  • Omega Engineering OS533 - page 61

    Specifications 7 7-4 LASER SIGHTING Wavelength (Color): 630-670 nanometers (red) Operating Distance: Laser Dot 2 to 40 ft. Laser Circle 2 to 15 ft. Max. Output Optical Power: <1mW at 75°F ambient temperature, Class II Laser Product European Classification: Class 2, EN60825-1 Maximum Operating Current: 25mA at 5.5 V FDA Classification: Complies ...

  • Omega Engineering OS533 - page 62

    Glossary of Key Strokes 8 8-1 Key(s) Key(s) Functions • Selects one of the following Display Modes: E , MAX, MIN, dIF, AVG, TC, HAL, LAL, AMB, PRN or MEM. • Locks/unlocks the trigger. • Enables/disables High Alarm. • Enables/disables Target Ambient Temperature Compensation. • Enables/disables sending data to the personal computer or seria ...

  • Omega Engineering OS533 - page 63

    Glossary of Key Strokes 8 8-2 Notes ...

  • Omega Engineering OS533 - page 64

    A-1 Appendix: How Infrared Thermometry Works A Thermal Radiation Heat is transferred from all objects via radiation in the form of electromagnetic waves or by conduction or convection. All objects having a temperature greater than absolute zero (-459°F, -273°C, 0 K) radiate energy. The thermal energy radiated by an object increases as the object ...

  • Omega Engineering OS533 - page 65

    Appendix: How Infrared Thermometry Works A A-2 Blackbody When thermal radiation falls on an object, part of the energy is transmitted through the object, part is reflected and part is absorbed. A blackbody is defined as an ideal object that absorbs all the radiation incident upon it. The best example of a real object that acts like a blackbody is a ...

  • Omega Engineering OS533 - page 66

    A-3 Appendix: How Infrared Thermometry Works A Wien’s Displacement Law describes the exact mathematical relationship between the temperature of a blackbody and the wavelength of the maximum intensity radiation. where λ m = wavelength measured in microns T = temperature in Kelvin Calculating T emperature The net thermal power radiated by an objec ...

  • Omega Engineering OS533 - page 67

    Appendix: How Infrared Thermometry Works A A-4 Optics Field of View Accurate measurement of temperature via infrared means depends strongly on the size of the object and the distance between the thermometer and the object. All optical devices (e.g. cameras, microscopes, infrared thermometers) have an angle of vision, known as a field of view or FOV ...

  • Omega Engineering OS533 - page 68

    B-1 Appendix: Emissivity V alues B Table B-1 provides guidelines for estimating the emissivity of various common materials. Actual emissivity, especially of metals, can vary greatly depending upon surface finish, oxidation, or the presence of contaminants. Also, emissivity or infrared radiation for some materials varies with wavelength and temperat ...

  • Omega Engineering OS533 - page 69

    Appendix: Emissivity Values B B-2 NONMET ALS Material Emissivity ( ε ) Asbestos Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.96 Asphalt, tar, pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.95 – 1.00 Brick – red and rough . . . . . . . . . . . . . . . . . . . . . . . ...

  • Omega Engineering OS533 - page 70

    C-1 Appendix: Determining an Unknown Emissivity C In Appendix A, we showed how emissivity is an important parameter in calculating the temperature of an object via infrared means. In this section we discuss how to determine a specific emissivity value. If you know the material of the object, use Table B- 1 in Appendix B to look up its approximate e ...

  • Omega Engineering OS533 - page 71

    Appendix: Determining an Unknown Emissivity C C-2 Method 3 1. Use this method to measure objects at temperatures below 500°F (260°C). 2. Place a large piece of masking tape on the object (or at least a sample of the object material). Allow time for the masking tape to reach the object temperature. 3. Set the emissivity of the thermometer to 0.95. ...

  • Omega Engineering OS533 - page 72

    C-3 Appendix - Determining an Unknown Emissivity C Method 4 1. Paint a sample of the object material with flat black lacquer paint. 2. Set the emissivity to 0.97 and measure and record the temperature of the painted portion of the sample material - Area ‘A’ in Figure C-1. Make sure that the painted area of object material fills the FOV of the t ...

  • Omega Engineering OS533 - page 73

    Appendix: Determining an Unknown Emissivity C C-4 Notes ...

  • Omega Engineering OS533 - page 74

    I-1 Index I A ac Adapter Input Jack ............. 1-6 Active Operation ...................... 2-8 Aiming Sight “V Groove” ....... 1-4 Alarms ........................... 2-14, 2-15 Alkaline Batteries ...... 2-1, 4-1, 6-3 Ambient Target Temperature Compensation ...................... 2-16 Analog Output Jack ................. 1-6 B Backlighting Ic ...

  • Omega Engineering OS533 - page 75

    Index I I-2 F Field of View: Diagrams ....................... 2-3, 2-4 Positions ................................ 2-2 Fixed Point Monitoring over Time Measurement ................ 2-7 G Gray Bodies (Objects) ............. A-2 H High Alarm Value, setting ... 2-14 I Icons: ATC ....................................... 1-5 Backlighting ................. ...

  • Omega Engineering OS533 - page 76

    I-3 Index I M Main Display ............................ 1-4 Modes: Real Time .............................. 2-8 Recall ........................ 2-23, 2-25 Moving Surface Scan ............... 2-7 O Optics ........................................ A-4 P Parameters, reviewing .......... 2-27 PAS Code .................................. 5-2 Passive Opera ...

  • Omega Engineering OS533 - page 77

    WARRANTY / DISCLAIMER OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 25 months from date of purchase on the base unit and 13 months from date of purchase on Laser Sight Module . OMEGA WARRANTY adds an additional one (1) month grace period to the normal product warranty to cover handling ...

  • Omega Engineering OS533 - page 78

    M2891/0903 Where Do I Find Ever ything I Need for Pr ocess Measurement and Control? OM EGA…Of Course! Shop online at omega.com TEMPERA TURE 䡺 ⻬ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies 䡺 ⻬ Wire: Thermocouple, RTD & Thermistor 䡺 ⻬ Calibrators & Ice Point References 䡺 ⻬ Recorders, Contro ...

Manufacturer Omega Engineering Category Thermometer

Documents that we receive from a manufacturer of a Omega Engineering OS533 can be divided into several groups. They are, among others:
- Omega Engineering technical drawings
- OS533 manuals
- Omega Engineering product data sheets
- information booklets
- or energy labels Omega Engineering OS533
All of them are important, but the most important information from the point of view of use of the device are in the user manual Omega Engineering OS533.

A group of documents referred to as user manuals is also divided into more specific types, such as: Installation manuals Omega Engineering OS533, service manual, brief instructions and user manuals Omega Engineering OS533. Depending on your needs, you should look for the document you need. In our website you can view the most popular manual of the product Omega Engineering OS533.

A complete manual for the device Omega Engineering OS533, how should it look like?
A manual, also referred to as a user manual, or simply "instructions" is a technical document designed to assist in the use Omega Engineering OS533 by users. Manuals are usually written by a technical writer, but in a language understandable to all users of Omega Engineering OS533.

A complete Omega Engineering manual, should contain several basic components. Some of them are less important, such as: cover / title page or copyright page. However, the remaining part should provide us with information that is important from the point of view of the user.

1. Preface and tips on how to use the manual Omega Engineering OS533 - At the beginning of each manual we should find clues about how to use the guidelines. It should include information about the location of the Contents of the Omega Engineering OS533, FAQ or common problems, i.e. places that are most often searched by users in each manual
2. Contents - index of all tips concerning the Omega Engineering OS533, that we can find in the current document
3. Tips how to use the basic functions of the device Omega Engineering OS533 - which should help us in our first steps of using Omega Engineering OS533
4. Troubleshooting - systematic sequence of activities that will help us diagnose and subsequently solve the most important problems with Omega Engineering OS533
5. FAQ - Frequently Asked Questions
6. Contact detailsInformation about where to look for contact to the manufacturer/service of Omega Engineering OS533 in a specific country, if it was not possible to solve the problem on our own.

Do you have a question concerning Omega Engineering OS533?

Use the form below

If you did not solve your problem by using a manual Omega Engineering OS533, ask a question using the form below. If a user had a similar problem with Omega Engineering OS533 it is likely that he will want to share the way to solve it.

Copy the text from the picture

Comments (0)